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Abstract

We share both recent and older, well-known results regarding the notions of stable ordinals
and shrewd cardinals. We then argue that ¥s-nonprojectible ordinals may be considered as re-
cursive analogues to subtle cardinals, a highly combinatorial type of cardinal related to Jensen’s
fine structure, due to the latter possessing a characterisation in terms of shrewdnesss.

1 Introduction

The notion of a shrewd cardinal was introduced by Rathjen in [10]. Shrewd cardinals offer an
alternative transfinite extension of indescribability to ¢-indescribability (for £ > w), since the latter
suffers from the following two unfavourable properties:

1. If k is &-indescribable and &' < £, k need not be £’-indescribable.
2. k cannot be k-indescribable.

Which imply that the hierarchy is not so nice and stops abruptly, being unable to reach, say, “hyper-
indescribability”. Shrewdness suffers from neither of these flaws, and therefore can be considered
as a linear hierarchy of large cardinal axioms bridging the gap between weak compactness or finite
stages of indescribability, and more powerful combinatorial or elementary embedding-based large
cardinals in the literature. Let us give their definition:

Definition 1.1. Let n > 0. A cardinal & is n-shrewd iff, for all P C V,; and every formula ¢(z), if
(Vietns €, P) = ¢(k), then there exist 0 < ko, 70 < & 50 that (Vig+n,, €, PN Vi) = (ko).

By slightly modifying the definition, one can obtain various natural strengthenings of these cardinals,
as well as delineate the consistency strength hierarchy of shrewdness more finely. In particular, we
will consider the definition of two additional parameters: an arbitrary class A and a set F of formulae.

The definition of a A-n-F-shrewd cardinal is obtained from the definition of an n-shrewd cardinal
by:

1. Restricting the formula ¢ to be an element of F.

2. Adding an additional predicate for A in both the hypothesis and the conclusion. Namely,
(Vietn, €, P) = @(k) becomes (Viyn, €, P, ANVii,) = ¢(k), and similarly (Vig4n,, €, P N
V'io) ': 90(50) becomes (VK0+?707 €, PN VHMA N VH0+7]0) ): (p("i())'

The formula therefore may now contain two additional predicate symbols, one for first-order variables
(representing P) and one for the highest-order variables (representing A). Therefore, it makes sense



to consider natural F’s which are closed under addition of predicates. The most natural F’s to
consider are therefore the classes II,, and ¥,, of the Lévy hierarchy.

Note that if A = V, one may eliminate the second part and so consider simply 7n-F-shrewdness.
Dually, if F consists of all formulae, one may eliminate the first part and so consider simply .A4-n-
shrewdness. By eliminating both, one arrives where we started — n-shrewdness.

It is now an immediate observation that x is n-shrewd iff it is n-IL,,-shrewd for all n. This is since
any formula is II,, for some n, by writing in prenex normal form. This allows us to connect back
finite stages of shrewdness to finite stages of indescribability:

Proposition 1.2. (Folklore) Assume 0 < n,m < w and n # 0. Then & is n-Il,,-shrewd iff k is
I17, -indescribable. In particular, k is n-shrewd iff k is Hg“-indescribable,

The proof that, if x is n-shrewd and 6 < 7, then & is d-shrewd (which implies that, say, if x is
n-shrewd and n > w, then & is totally indescribable) can be found in [9].

Subtlety is a combinatorial principle introduced by Jensen and Kunen relating to the former’s
analysis of the combinatorial and fine structural properties of the constructible universe L. While
originally formulated in a manner similarly to the ¢ principle, it also has a characterisation in terms
of shrewdness. This characterisation is quite reminiscent of Woodin and Vopénka cardinals. Let us
first give the original definition.

Definition 1.3. A cardinal k is called subtle iff, for any sequence (S, : @ < k) satisfying S, C «
for all a < k, and club C' in &, there are 3,0 € C so that < and Ss N B = Sg.

In essence, any sequence (S, : o < k) satisfying S, C « for all &« < k can be made to “cohere” club
many times. Some properties of subtle cardinals can be found in [5], e.g. if & is subtle then ¢, holds.
For the following characterisation, say & is A-< w-shrewd iff it is A-n-shrewd for all n < 7.

Theorem 1.4. Let m be an inaccessible cardinal. Then TFAE:
1. 7 is subtle.

2. For any A C Vg, the set of k which are A-< w-shrewd is stationary in .

Proof. The forward direction can be found in [|9]. For the sake of completeness, we will give it
here. So, assume 7 is subtle. It is known that 7 is strongly inaccessible, and thus |V;| = 7. Let
F : V. — 7 be a bijection. And since strongly inaccessible cardinals are limits of cardinals k < 7 so
that |V, | = K, one may pick F' in a way so that the set of k < m with F"V,, = k is club. This club is
denoted Cp. Now pick an arbitrary club B in 7. We aim to show that B contains a A-< m-shrewd
cardinal. Since 7 is uncountable regular, the intersection of two clubs in 7 is also club, so we may
assume without loss of generality that B C Cp, replacing B with B N CF if this isn’t the case. In
particular, all elements of B can be taken to be cardinals.

Now for a contradiction assume there is no cardinal x € B so that x is A-< m-shrewd. One can
use the axiom of choice to pick, for all k € B, a o, witnessing that x is not A-< m-shrewd (i.e. for
each k € B, k is not A-o,-shrewd). We may once again assume, without loss of generality, that
Kk < o, for all k € B, by the fact that if x is A-n-shrewd and § < 7, then & is A-0-shrewd (and so,
by contrapositive, if x is not A-n-shrewd for some 7 < k, then k is not A-n-shrewd for any n > k).
We can extend ¢ to a total map with domain s by simply putting o, = p for p ¢ B.

Let E be the set of p € B so that 0, < p whenever v < p. For example, min(B) € E, since
v < min(B) implies v ¢ B and whence o, = v. A simple argument shows that F is club in 7 as



well. It’s easy to see that, if ko, k1 € E and kg < k1, then o, < k1 and so kg is not A-k;-shrewd.
Therefore, for k € E, let k* be the minimal element of E above k. Note that, by our hypothesis
that all elements of B are cardinals, we have k + k* = k. Now since k is never A-x*-shrewd, we may
let ¢, and P, witness this, i.e. be so that (Vi«, €, Py, ANV,+) E px(k), but whenever 0 < v,§ < &,
we have (V,15,€, P, NV, AN V,4s) = —w (V).

Now let 6, (u,v) be the formula v € Ord A 3§ > v(u C Ve A (Ve, 6,4, PN V) = pi(v)). Here, P is
the predicate (i.e. definable class) which is interpreted as A. Now, if £* < p, then (V,, €, ANV,) |=
0, (P., k), witnessed by & = k*. Let ¥,(v) be the formula in the language with both additional
predicate symbols which states that 0, (u,v) holds where u is the subclass of the first-order domain
of all objects satisfying the first predicate. Therefore, k* < p implies (V,, €, P., ANV,) = 9.(x).
Furthermore, for all 0 < p < k, we have (V,;, €, P, NV,, ANV,) = =9,(1) by our assumption that
whenever 0 < v,d < k, we have (V,45,€, P, N V,, ANV, 15) E —px(v).

Now let F., be the set of ordinals below 7 which are limit points of E. The upshot is that,
whenever k,p € Eo and & < p, then (V,,€,P.,,ANYV,) = J.(k) and, whenever 0 < p < &,
(Vi,€, PNV, ANV,) = 0, (1). Now we use subtlety to derive a contradiction. Let (¢, : n < w)
enumerate all formulae with one free variable in our language with two predicate symbols. Also, for
Kk € E, let £** denote the minimal element of E., above k. Then define P} as a particular coding
of P, namely P = (F'P,N(k\w))U{3n:ne F'P.NwtU{3n+1: Vi, E, P, ANV,us) |=
Yn(K)FU{Bn+2: (Viur, €, P, AN Viux ) = —hy(k)}. For o ¢ Eo, set P2 = a..

Since F, is the set of limit points of a particular club and is therefore seen to also be a club, and it
is also immediate that P C « for all o < §, we can use subtlety of 7 to find two 8,7 € E so that
B <~ and PyNB = P;. By the way we defined P} for k € Ew, the fact that F' is injective, and that
E C Cp, it follows that P, N Vg = P3. By our previous remark that x,p € Fs and x < p implies
(Vp, €, P, ANYV,) = 94(k), it follows that (Vy«, €, Py, AN Vi) = 9,(vy). Combining this with
Py N B = Pj and the definition of P; for k € Ew, we obtain (Vg €, P, N Vg, AN Vger ) |= 9, (B).
Another application of the precise way Py is defined for £ € E, together with PJ N3 = Pj, we get
(Vy, €, P,N Vg, ANV,) = Y4(B). But this contradicts our assumption that, whenever 0 < u < &,
(Vi, €, PNV, ANV,) = =0, ().

Now, for the backwards direction, we utilize Rathjen’s notion of reducibility. Assume that 7 is
inaccessible and, for any A C V., the set of x which are A-< m-shrewd is stationary in 7. Via
Appendix 7.8 of [10]|, we see that any A-< m-shrewd cardinal below 7 is A-< 7-reducible. Now let
C be a club in 7 and § = (So + a < ) satisfy S, C « for all @ < w. It actually suffices for s
to be partial with domain C, i.e. S, is only defined for @« € C. This will be relevant later, and
does not affect the large cardinal axiom as we only consider S for 3 € C. Note then that SCv,.
By stationarity, there is x € C' which is S-< 7-reducible. We will be interested in the specific case
that  is S-k + 2-reducible. Now there is some 0 < ko < no < k+ 2 so that (V,, €, HO,S|170) is
elementarily equivalent to (Vi.y2, €, 5, S|(r + 2)). We first claim that we must have 1y = ko + 2: let
¢ be a formula formalizing “c 4+ 1 exists and is the largest ordinal”, where ¢ is a constant symbol
representing ro or k. Since (Vii9, €,K) = ¢, we have (V,, €, ko) = ¢, and so ko + 1 is the largest
ordinal of V;,,. Thus 19 = ko + 2.

Utilizing elementary_‘ equivalence again, but this time exp101t1ng the predicate, we obtain, for any
a < Ko, <VT]07E"%07S|(K:0 +2)> ': S Sﬂo iff < K425 €5 K, S|(H‘+2)> ': S Sf”v' Thusv SN Nky = Sﬁoa
as desired. It remains to show that x, kg € C. We already have x € C by hypothesis, and



ko € C < ko € dom(S)

—

< ko € dom(S|(ko +2))

= (Vugt2, € Ko, S|(ko +2)) = “ko € dom(S] (ko + 2)) (1)
— (Veio, €k, S|(ko +2)) E “k € dom(S|(k + 2))
<— ke’

which is true. O

In particular, if 7 is subtle, then for any 1 < 7 there is an x < 7w which is n-shrewd. Of course, the
full characterisation we gave is stronger. Note that 7 itself need not be 1-shrewd: this is since any
1-shrewd cardinal is I12-indescribable, but subtlety is describable by a I} definition and whence the
least subtle cardinal isn’t even weakly compact.

2 Recursive analogues and stable ordinals

In this brief note, we shall show that Xs-nonprojectible ordinals may be considered as so-called
“recursive analogues” of subtle cardinals. These are strengthenings of the notion of a nonprojectible
ordinal, which was a direct byproduct of Jensen’s analysis of the fine structure of L, thereby also
being perhaps genealogically related to subtlety as well. This notion was first shared in print in the
famous article [4], under the name of a strongly admissible ordinal. The term “nonprojectibility”
arises from the fact that « is nonprojectible iff, whenever n < a, X C n and f : X — « is surjective,
then f is not ¥;-definable in L, with parameters. Equivalently, the ordinals < avso that L, <x, L,
are unbounded, which is the definition we shall use. The original definition was as ordinals « so that
L, satisfies Kripke-Platek set theory KP with X-separation, which also is equivalent to ordinals «
so that L, N P(w) is a model of II3-comprehension, where the latter additionally required o < wf.
See |2| and [12] for proofs of these characterisations. Xs-nonprojectibility can be obtained from
any of these characterisations by going “one level up” in complexity: e.g. not having ¥,-definable
surjective mappings, having Ys-elementary substructures, satisfying Yp-separation or modelling IT3-
comprehension. We will once again primarily be dealing with the characterisation via elementary
substructures.

The notion of a recursive analogue is relevant to a-recursion theory, in which one generalizes theorems
in classical recursion and computational complexity theory (where primitive objects are hereditarily
finite sets, e.g. natural numbers and finite binary sequences) to theorems about L, where « is
an admissible ordinal. For example, for a > w, hyperarithmetic reals may be treated as primitive
objects as they arise in LWFK NP(w). In essence, a recursive analogue of a large cardinal is a notion
describing large countable ordinals, which may behave in a way that mimics the way that large
cardinals act. This also makes them useful in proof theory, as the existence of recursive analogues
of large cardinals is actually provable in ZFC, unlike the existence of large cardinals, and so one
may define ordinal representation systems in ZFC without requiring large cardinal hypotheses. For
example, an ordinal analysis of KP + “ every set is contained in a standard transitive model of KP”,
also denoted KPI, has traditionally required the additional assumption of the existence of a weakly
inaccessible cardinal, but this could be eliminated by replacing weakly inaccessible cardinals with
their recursive analogue — recursively inaccessible ordinals.



Recursively regular ordinals are typically considered to be admissible ordinals (and whence recur-
sively inaccessible ordinals are precisely the admissible limits of admissible ordinals), because of the
similarity between the following two characterisations:

Lemma 2.1. A cardinal k is regular iff, for any function f : Kk — K, there is an o < k so that
f"a C a. An ordinal k is admissible iff the above holds when f is restricted to be Aq-definable in
L, with parameters.

Unfortunately, this substitution means that slightly more heavy lifting is required, as one needs to
verify that the desired projection functions are sufficiently definable. The notions of A;- and ;-
definability in L, with parameters arises often, so we adopt the following abbreviative convention
from generalized recursion theory: A C L, is a-recursive (resp. a-recursively enumerable) iff it is
Aj-definable (resp. ¥;-definable) in L, with parameters, i.e. Aj(L,) (resp. X1(L,). Note that any
a-recursively enumerable map f : L, — L, is already a-recursive, since f(z) # y is equivalent to
Fz(f(x) = z Az # y) and ¥ formulae are closed under conjunction and existential quantification.
Back to the topic at hand, let us define the notion of a &-11,,-reflecting ordinal.

Definition 2.2. Let A be a class of ordinals. For > 0, an ordinal « is called &-T1,,-reflecting onto
A iff, for every II,-formula ¢(z,7), and for all b € Lq, if Lat¢ = ¢(a,b), then there exist ag, & < a

so that & > 0, ag € A, be Lo, and Loy+e, E (g, b).

a is called &-T1,,-reflecting iff it is &-I1,-reflecting onto Ord. And « is IT,-reflecting iff it is “0-IL,,-
reflecting”, which means that the parameter for « is eliminated (since a ¢ L)), i.e. for all b € Ly,
if Lo = o(b), then there exists ag < v so that ag € A, b € L, and Ly, = ¢(b).

It is known that « is Ia-reflecting iff o > w and it is admissible. See [1] for a proof of this. Therefore,
it may be argued that Ils-reflecting ordinals serve as a countable analogue of uncountable regular
ordinals, as already mentioned. It is known that II3-reflecting ordinals are Ils-reflecting onto the
class of IIa-reflecting ordinals, and much more. Hence, it was argued by Richter and Aczel in [11]
that I, o-reflecting ordinals should serve as recursive analogues to II-describable cardinals for
n > 0. In general, for ¢ > 0, £&-I1,,-reflecting ordinals should serve as recursive analogues to £ + 1-
IT,,-shrewd ordinals. A large focus has become stability, which links back to our previous mention
of nonprojectibility:

Definition 2.3. Say o is {-stable iff L, <5, L¢, where <5, denotes the relation of being a ;-
elementary substructure.

It is easy to see that if « is a + 1-stable, then it is II,-reflecting for all n < w. Namely, let ¢(z) be
an arbitrary formula, and b € L,. Assume L, = ¢(b). Then L, satisfies “there is an ordinal S so
that b € Lg and Lg |= ¢(b)”, which can be written in ¥; form. Thus, by Ly <5, La+1, Lo satisfies
the same thing, and so the [ witnessing this satisfies b € Lg and Lg |= ¢(b). It turns out that the
converse is also true, and a more general result holds for £-I1,,-reflection.

Lemma 2.4. (Folklore) For an ordinal o, « is o + &-stable iff it is v-I1,,-reflecting for all n and
v <€

Using Theorem [I.4] and Lemma [2.4] this motivates the definition of a recursively subtle ordinal.
Definition 2.5. Let A be an arbitrary class. Say that « is A-§-stable iff (Lo, €, ANL,) <5, (L¢, €

, AN L¢). Now say an ordinal p is recursively subtle iff, for any p-recursively enumerable A C L, p
is IIo-reflecting onto the set of x < p which are A-p-stable.



Note that it is a known result that if k is A-< p-stable, it is already A-p-stable, and so we did not
deviate from the “spirit” of Theorem too much. Actually, let us briefly state some well-known
properties of stability:

Lemma 2.6. 1. If a < B <7 and « is y-stable, then o is B-stable.

2. If « is B-stable and (B is y-stable, then « is y-stable.

8. If a is B-stable for all a € A, then either sup A = 8 or sup A is 3-stable.
4. Dually, if « is B-stable for all 5 € A, then « is sup B-stable.
5

. If a is a + 2-stable, then it is 1L, -reflecting on the class of ordinals & which are & + 1-stable,
for alln < w.

6. The least ordinal o that is a limit of ordinals £ which are {+1-stable is not itself even admissible.

Proof. (1) This follows from an easy upwards absoluteness argument.
(2) This is trivial.

(3) Assume that, for all & € A, we have L, <y, Lg. We aim to show that Ls,p 4 <x, Lg, assuming
supA < (. In the case when sup A = max A, it is trivial, so we may assume, without loss of
generality, that sup A is strictly greater than all elements of A. Let « € Lgyp 4 and ¢ be an arbitrary
Y, formula. We aim to show that Lg,, 4 = ¢(z) iff Lg = ¢(z). The forwards direction follows by
upwards absoluteness. For the converse direction, assume Lg |= ¢(z). Since sup A is a limit ordinal
and A is cofinal in sup A, there is some « € A so that € L,. By L, <5, Lg, we have L, = ¢(z).
Then Lgyp 4 E ¢(z), once again by upwards absoluteness.

(4) This follows by a similar argument to (3).

(5) Let ¢ be a II, formula so that L, = ¢, and € L,. Then Loqo = 3E(Le <5, Leyi ANz €
Le N Le |= ¢(2)), with witness £ = «, which can be rendered in ¥ form. Thus L, = 3¢(Le <5,
LeiiNx € Le ALg = ¢(2)), and so there is some £ < a so that £ is £ + 1-stable, 2 € L¢ and L |= .
Thus £ € AN« where A is the class of £ which are £ + 1-stable, and so & witnesses IT,,-reflection
onto A in this instance.

(6) This proof uses Richter and Aczel’s notion of ¥q-collection; note that this is different to many
other notions of F-collection. Now for contradiction, assume that o is admissible. Let ¢(n,7)
be a formula that asserts that + is the n’th, starting from n = 0, ordinal so that v is v + 1-
stable. This formula can be defined uniformly in n. Then apply Xj-collection to the formula
L, E VYn < w3vp(n,v) to obtain “for some b € L, we have L, = Vn < wiv(b = ¢(n,v))”, i.e. some
set in L, contains w many ordinals v so that v is v + 1-stable. But this contradicts minimality of
o. O

Many more advanced results about stability, e.g. that it is a proper hierarchy (i.e. that for all ~,
there is an « that is a + y-stable but not « + v + 1-stable), are proved via reflection, e.g. showing
that an ordinal o which is a + v + 1-stable is II,-reflecting on the set of ordinals ¢ < « which are
& + v-stable, for all n. Much of the work in [7] is helpful for formalizing reflection schemata in
first-order set theory.

The reason why we used Ils-reflection in our formulation of recursive subtlety is because, recalling
the statement that I1,,;o-reflection serves as a recursive analogue of I1:-indescribability, it is known
that r is ITj-indescribable onto A iff it is strongly inaccessible and A is stationary in &, thus if p



is recursively inaccessible (which we shall show all recursively subtle ordinals are) it yields another
adequate generalizaton. For example, an ordinal is considered to be recursively Mahlo iff it is IT-
reflecting onto the set of admissible ordinals below, analogously to how a cardinal is Mahlo iff it is
II}-indescribable onto the set of regular cardinals below.

As mentioned, our main theorem is that p is recursively subtle iff it is 3g-nonprojectible. First, we
shall state some results regarding stability and nonprojectibility, including some direct implications
and size comparisons. Recall that p’s nonprojectibility is a II3 property of L,. Therefore, there
is already some behaviour-wise similarity between nonprojectibility and subtlety: the least subtle
cardinal is much greater than the least 1-shrewd cardinal, and is itself Mahlo but not weakly compact.
Similarly, the least nonprojectible ordinal is much greater than the least « which is a+ 1-stable, and
is (as we shall prove in a moment) itself recursively Mahlo but not II3-reflecting. ¥s-nonprojectibility
has many of the same “behaviours”.

That nonprojectible ordinals are recursively Mahlo follows from the following theorem and the fact
that if ) is p-stable, it is very obviously admissible:

Theorem 2.7. If p is nonprojectible, then p is Ily-reflecting onto the set of k < p so that K is
p-stable.

This theorem came as a surprise, since previously Ils-reflection is generally considered stronger than
even iterated limit point taking. However, there are already other contexts in which Ils-reflection
may fail to imply iterated limit points (e.g. W, is IIo-reflecting onto the set of cardinals, despite not
being a limit of limit cardinals).

Proof. Assume that p is nonprojectible, L, = Va3yp(z,y,b), where ¢(z,y,p) is a Ag-formula, and
b€ L, Let 8 be so that 8 is p-stable and b € Lg. Now let x € Lg. Since 3 is p-stable, there is
some y € Lg so that ¢*#(x,y,b) since L, = Jyp(z,y,b) and Lg <x, L,. Now let y € Lg be so
that Lg = o(x,y,b). Since ¢ is Ag and such formulae are absolute for transitive sets, it follows that
ole(z,y,b) iff &8 (x,y,b), thus Lg = VaIyp(z,y,b). The desired result follows. O

Also let us briefly state some results regarding nonprojectibility.

Theorem 2.8. Say « is w-fold stable iff there is a map f : w — Ord so that f(0) = « and, for all
1 <w, f(i) is f(i+ 1)-stable.

1. Assume « is w-fold stable, witnessed by f. Then sup{f(i) : i < w} is nonprojectible.

2. As a sort of converse, assume p is nonprojectible, cof(p) = w and « is p-stable. Then « is
w-fold stable.

Proof. (1) Let o; = f(4), where f witnesses a’s w-fold stability, and p = sup{a; : i < w}. Then by
definition we have Lo, <3, La, <5, La, <3, ---. By Lemma [2.6]2 and [2.6]4, we see that a; is
aj-stable whenever 7 < j, and therefore «; is p-stable for all i. Now let 7 < p. Then there is some
i < w so that 7 < «;, and so «; is p-stable, witnessing p’s nonprojectibility in this case.

(2) Let {p; : © < w} be a cofinal subset of p, whose existence is guaranteed by our hypothesis
cof(p) = w. For each ¢ < w, pick a §; so that p; < ¢; and 0; is p-stable, whose existence is guaranteed
by our hypothesis that p is nonprojectible. By Lemmal7 d; is 6;-stable whenever 7 < j. Let ¢ be
the least natural number so that o < p;. Then define f : w — Ord by f(0) = a and f(i+1) = §;1+.
Another application of Lemma [2.6]1 shows that « is d;-stable for all ¢ > ¢, and so f witnesses a’s
w-fold stability. O



Definition 2.9. Let &, p be ordinals with £ < p. Then A C L, is called (k, p)-interpretable iff, for
any Ys-formula ¢ and parameters Z with A = {z € L,; : L, = p(z,2)}, if one sets A*» = {z € L, :
L, = ¢(x,2)}, then A= Al» N L,.

In other words, A is (k, p)-interpretable iff any 3o-definition gives a way of extending A to a subset
of L, without adding new elements of L. Note that the resulting extensions generally depend on
the ¢ and 2" chosen, rather than in fact giving unique, canonical extensions.

Lemma 2.10. Let &, p be ordinals with k < p. Then the following are equivalent:
1. K is Xo-p-stable.
2. Every subset of L, is (k, p)-interpretable.

Proof. For the forward direction, assume & is 3a-p-stable, A C L, and ¢, Z are so that A = {z €
L, : L. = ¢(x,2)} (if Ais not ¥p(Ly), this is vacuous). By L, <5, L,, we have L, = ¢(z,?2) iff
L, E ¢(x,2) for z € Ly, ie. v € Aiff v € AL for all x € L,,. Therefore ANL, = AL N L, and,
since A C L., ANL, = A. Thus, A= A% N L, and, since A, p, 7 were arbitrary, any subset of L,
is (k, p)-interpretable.

For the converse direction, let Z € Ly, and ¢ be a o formula. We aim to show that L, = ¢(2) iff
L, = ¢(2). Let A={x € L, : L, = ¢(2)}. Then, by hypothesis, A = AL» N L,. Note that, since
AC L,, we have AN L, = A. Tt follows that, for all z € L., v € Aiff x € ALe, ie. L. = (%) iff
L, = ¢(Z). Since ¢(Z) is independent of z, this gives us the desired result. O

We give our main results now.

Definition 2.11. Say « is Yj-¢-stable iff L, <x, L¢, where <5, denotes the relation of being a
Y.o-elementary substructure.

So ¥-nonprojectibility is defined analogously, as alluded to previously. The proof of 2.7] generalizes
neatly to show Xs-nonprojectible ordinals are IIs-reflecting onto the ordinals Yo-stable up to them.

Theorem 2.12. Let k < p be ordinals so that k is Xo-p-stable and A C L, is Aé" (Ly). Then k is
A-p-stable.

Proof. So k is Yg-p-stable and A is AZLP (L), witnessed by a Xy formula ¢, Is-formula ¢ and
parameters W,z € L,. Then L, E ¢(z,w) iff L, E ¢(z,2) if x € A, for x € L, by Xo-
stability, so consequently (L., €, AN L) = ¥ (@), where 9 can include the predicate symbol P, iff
(L, €) = ¥*(@). Here, ¥* is obtained from 1 by replacing all positive instances of the predicate
symbol P(v) with ¢(v, Z) and all negative instances with —)(v, ). It is easy to see that this doesn’t
increase the complexity from ¥, to some higher Lévy rank.

Now, by X-stability again, A is (k, p)-interpretable and so (Ly,€) | ¢*(a) iff (L,,€) E ¢*(a)
whenever @ € L. And then the translation works backwards to show that this happens iff (L, €
A) | y(a). N

Regarding the formulation of the above theorem, it cannot be improved by much. For example,
one can not strengthen this to when A is Ay(L,). This is because {k} is Ay(L,) and & is never
{k}-p-stable, since {k} N L, =0 and {k} N L, # 0, thus L, and L, disagree about the ¥;-sentence
Jz(P(z)). This has no bearing on the truth of our main theorem, since we quantify A before
considering the A-p-stable ordinals. For example, if & < x and k is p-stable, then & is {a}-p-stable.



An earlier of this paper had used only X-stability, and used ¥; rather than A,. We neglected the
possibility that the predicate symbol could occur negatively, raising the complexity from ¥; to ¥q
at best. We wish to thank one of the author’s friends, who wishes to remain anonymous, for first
noticing the mistake, and Philip Welch for discussion regarding whether it could easily be fixed.
Part of the argument below is due to him.

For transitive sets M C N, we let Thiv (M) denote the ¥;-satisfaction predicate for formulae with
parameters in M, in N; that is, x € ThN(M) iff x = (", y) for some ¥ € M and X;-formula ¢ so
that N = ¢(7). For example, M <x, N iff Th}! (M) = Th} (M).

Lemma 2.13. Let 7 < p be ordinals so that T is A-p-stable, where A = ThlL" (L;). Then T is
Yo-p-stable.

Proof. By the remark directly before this Lemma, A = Th¥"(L,). Also n.b. that A C L., since L,
contains all natural numbers and is closed under pairing. Now let i € L, be arbitrary parameters,
and ¢ be a Ya-formula. We want to show that L, |= ¢(¥) iff L, = ¢(¥). To achieve this we use the
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satisfaction predicate. Let ¢ be of the form JzVz1)(z, z, ), for a Ay formula . Then:

Lo b olf) < Ly £ Iove(e,a.9)
L; E 3z-3z(z, 2, 7)

e LTIz z,9) ¢ A)

Lr E 30(=P(( 30", 1, 5)) )
L, b= 30(=P(( 3=, 7, )

Jz e L,(("3z—7, 2, 9) ¢ A)

Ly = #(¥)

rreoret

The idea is that we “pack” the Iy part into the Aq part via the truth predicate, then exploit ordinary
stability and then unpack the II; part. O

Corollary 2.14. p is Yo-nonprojectible iff it is recursively subtle.

The forward direction is quite intuitive — one shows that for sufficiently large x < p, the additional
predicate for A can be eliminated, by letting x be greater than the ranks of all the parameters in
the definition of A. For the converse direction, we use satisfaction predicates, which are sufficiently
definable, to get ordinals Yo-stable up to p.

Proof. We show the forwards direction first. By Theorem [2.7] it suffices to show that, for a tail of
Kk < p, the predicate in the notion of recursive subtlety may be eliminated. Formally restated, we
aim to show that, for any p-recursive A, there is some 7 < p so that, for all kK < p so that & is
p-stable and T < k, k is A-stable. Then the desired result follows from the fairly obvious fact that
if v is II,-reflecting onto A and £ < a, then « is II,-reflecting onto AN [¢, ).

Now let A be p-recursively enumerable. By hypothesis, there is some ¥;-formula ¢ and parameters
Z € L,sothat A= {z € L, : L, = ¢(x,2)}. For each 0 < i < len(?), let o; denote the
rank in the constructible hierarchy of z;, i.e. «; is the least ordinal so that z; € L,,4+1. Set
7 =max{q; : 0 < i <len(2)}, and assume that £ < p is so that « is p-stable and 7 < k. Then, since



Z€ Ly C Ly, it follows that A is ElL” (L,;). By the previous Theorem, « is A-p-stable. This gives
the desired result.

We now show the backwards direction. Suppose p is recursively subtle. Let k < p be arbitrary.
We want to find 7 < p so that kK < 7 < p so that 7 is ¥a-p-stable. Let A = ThlL" (L,). The work
of |7] and [3] shows that A is itself p-recursively enumerable. By recursive subtlety of p, there is a
Kk < T < pso that 7 is A-p-stable. 7 is as desired, since ThlL” (L;)=ANL,. O

We would like to note that it is still an open question what recursive analogues of higher large
cardinal axioms could be. It is a relatively vague question, and not of such high priority as recursive
analogues are typically studied for their applications to recursion theory and proof theory rather
than for themselves. However, as a closing remark, we will explain how it is possible that one could
consider the recursive analogue of measurability to be ¥s-extendibility:

Definition 2.15. An ordinal « is called Ys-extendible iff there is § > « so that a is Xo--stable.
Let ¢ denote the least ¥s-extendible ordinal.

¢ does indeed have applications to recursion theory — for example, the ¥o(L¢) subsets of w are
precisely the arithmetically quasi-inductive subsets of w, analogously to how the w{®-recursive
subsets of w are precisely the arithmetically inductive subsets of w. ( itself also has a characterisation
via generalized computability, namely ( is the supremum of the eventually writable ordinals with
respect to an infinite time Turing machine. There may be an analogue of hyperarithmetical theory,
namely hyperinductive theory, at this stage — we direct the reader to [§].

Say that a sequence X = (X 5 : B < A) of A many subsets of an admissible ordinal x > X is recursive
iff {(a, B) : @ € X3}, the subset of k x A coding X, is k-recursive. It is known that, if X is recursive,
then N B X3 is k-recursive. Say an ultrafilter ¢/ on & is L,-complete iff, whenever X is recursive
and Xg € U for all B < A, then ﬂ5<>\ X € U. Then say & is recursively measurable iff there is an
L-complete nonprincipal ultrafilter on the Boolean algebra of x-recursive subsets of «.

Then k is recursively measurable iff it is Yo-extendible. This was initially thought to be “consistent”
in a sense with relations to other large cardinal axioms — for example, any measurable cardinal is
weakly compact and subtle, and:

Proposition 2.16. If a is Yo-extendible, then « is llz-reflecting, nonprojectible, and in fact a limit
of smaller Il3-reflecting nonprojectible ordinals.

The proof is an easy reflection argument, utilizing the truth predicate from [7]. For more information
on the notion of recursive measurability in particular, see [6]. However, from the work in this
paper, we see Yg-extendibility iis likely inadequate, as any measurable cardinal is subtle but Yo-
nonprojectible ordinals are limits of many s-extendible ordinals. In an upcoming paper, we attempt
to tackle recursive analogues in full generality.
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