

$\mathcal{P}(\kappa)/\text{NS}_\kappa$ and Stationary Reflection

Jayde Massmann

STUK 17
2025-11-05

Outline

1 Introduction

2 The Mahlo Order

3 Forcing

Table of Contents

1 Introduction

2 The Mahlo Order

3 Forcing

Large cardinals

It is human nature to want to go higher and higher. This leads to the large cardinal hierarchy, which seems to be a **well-ordered** measuring stick for all possibly consistency strengths.

Large cardinals

It is human nature to want to go higher and higher. This leads to the large cardinal hierarchy, which seems to be a **well-ordered** measuring stick for all possibly consistency strengths. One can draw a line, below which the properties generally relativize to L , above which the properties imply L gets cardinals and cofinalities vastly wrong. This has been formulated as a sharp **dichotomy** by Jensen, using “ 0^\sharp ”.

Large cardinals

It is human nature to want to go higher and higher. This leads to the large cardinal hierarchy, which seems to be a **well-ordered** measuring stick for all possibly consistency strengths. One can draw a line, below which the properties generally relativize to L , above which the properties imply L gets cardinals and cofinalities vastly wrong. This has been formulated as a sharp **dichotomy** by Jensen, using “ 0^\sharp ”.

- Inaccessible, Mahlo, weakly compact, subtle, ineffable
(comfortably compatible with $V = L$)

Large cardinals

It is human nature to want to go higher and higher. This leads to the large cardinal hierarchy, which seems to be a **well-ordered** measuring stick for all possibly consistency strengths. One can draw a line, below which the properties generally relativize to L , above which the properties imply L gets cardinals and cofinalities vastly wrong. This has been formulated as a sharp **dichotomy** by Jensen, using “ 0^\sharp ”.

- Inaccessible, Mahlo, weakly compact, subtle, ineffable (comfortably compatible with $V = L$)
- Measurable, strong, Woodin, superstrong (suddenly, L must be far from V)

Large cardinals

It is human nature to want to go higher and higher. This leads to the large cardinal hierarchy, which seems to be a **well-ordered** measuring stick for all possibly consistency strengths. One can draw a line, below which the properties generally relativize to L , above which the properties imply L gets cardinals and cofinalities vastly wrong. This has been formulated as a sharp **dichotomy** by Jensen, using “ 0^\sharp ”.

- Inaccessible, Mahlo, weakly compact, subtle, ineffable (comfortably compatible with $V = L$)
- Measurable, strong, Woodin, superstrong (suddenly, L must be far from V)
- Supercompact, huge, Reinhardt (we have no good theory of the universe's “fine structure” here)

Where do we want to focus?

That depends on what you want. Lots of interesting combinatorial hypotheses (e.g. forcing axioms) require corresponding large cardinal hypotheses beyond 0^\sharp to justify their consistency.

Where do we want to focus?

That depends on what you want. Lots of interesting combinatorial hypotheses (e.g. forcing axioms) require corresponding large cardinal hypotheses beyond 0^\sharp to justify their consistency.

However, today I'm really interested in what goes down at the lower levels: around a **weakly compact** cardinal, at most an **ineffable**.

The Nonstationary Algebra

Let $\text{NS}_\kappa \subseteq \mathcal{P}(\kappa)$ be the ideal of nonstationary subsets of κ - i.e. those disjoint from some closed unbounded set. $\mathcal{P}(\kappa)/\text{NS}_\kappa$ consists of equivalence classes under $X \sim Y$ iff $X \Delta Y \in \text{NS}_\kappa$.
 $[X] \leq [Y]$ iff $X \setminus Y \in \text{NS}_\kappa$.

The Nonstationary Algebra

Let $\text{NS}_\kappa \subseteq \mathcal{P}(\kappa)$ be the ideal of nonstationary subsets of κ - i.e. those disjoint from some closed unbounded set. $\mathcal{P}(\kappa)/\text{NS}_\kappa$ consists of equivalence classes under $X \sim Y$ iff $X \Delta Y \in \text{NS}_\kappa$. $[X] \leq [Y]$ iff $X \setminus Y \in \text{NS}_\kappa$.

- The bottom element, $\mathbf{0} = [\emptyset] = \text{NS}_\kappa$ is the nonstationary ideal.
- The top element, $\mathbf{1} = [\kappa] = \text{NS}_\kappa^*$ is the club filter.
- Equivalence classes inbetween consist solely of stationary, costationary sets (not disjoint from any club but don't contain one either).

Antichains

Recall a (strong) antichain in a BA is a set of pairwise incompatible elements, where x, y are *incompatible* if $x \wedge y = \mathbf{0}$, ignoring $x, y = \mathbf{0}$.

Theorem

(Solovay) For any stationary $S \subseteq \kappa$, there is a family $\{X_\alpha : \alpha < \kappa\} \subseteq \mathcal{P}(S)$ so that X_α is stationary and $X_\alpha \cap X_\beta = \emptyset$ for $\alpha \neq \beta$; in particular $\mathcal{P}(\kappa)/\text{NS}_\kappa$ has size- κ antichains below every nonzero element.

Antichains

Recall a (strong) antichain in a BA is a set of pairwise incompatible elements, where x, y are *incompatible* if $x \wedge y = \mathbf{0}$, ignoring $x, y = \mathbf{0}$.

Theorem

(Solovay) For any stationary $S \subseteq \kappa$, there is a family $\{X_\alpha : \alpha < \kappa\} \subseteq \mathcal{P}(S)$ so that X_α is stationary and $X_\alpha \cap X_\beta = \emptyset$ for $\alpha \neq \beta$; in particular $\mathcal{P}(\kappa)/\text{NS}_\kappa$ has size- κ antichains below every nonzero element.

Question

Does $\mathcal{P}(\kappa)/\text{NS}_\kappa$ have size- κ^+ antichains?

Yes, usually

Theorem

(Shelah, Gitik-Shelah) Consistently no, for $\kappa = \omega_1$, relative to strong large cardinals (Woodin cardinals). Provably yes for $\kappa > \omega_1$.

Yes, usually

Theorem

(Shelah, Gitik-Shelah) Consistently no, for $\kappa = \omega_1$, relative to strong large cardinals (Woodin cardinals). Provably yes for $\kappa > \omega_1$.

$V = L$ implies yes for $\kappa = \omega_1$ too, since it implies a strong form of CH, \diamond . Whether CH is enough is **open**. Notice that $\mathcal{P}(\kappa)/\text{NS}_\kappa$ has a size- λ antichain if it has a length- λ descending chain.

Yes, usually

Theorem

(Shelah, Gitik-Shelah) Consistently no, for $\kappa = \omega_1$, relative to strong large cardinals (Woodin cardinals). Provably yes for $\kappa > \omega_1$.

$V = L$ implies yes for $\kappa = \omega_1$ too, since it implies a strong form of CH, \diamond . Whether CH is enough is **open**. Notice that $\mathcal{P}(\kappa)/\text{NS}_\kappa$ has a size- λ antichain if it has a length- λ descending chain.

The items of a descending chain get “thinner” as time goes on, so there being a long one while everything remains stationary is indicative of κ being “large”. Indeed, the first proof that NS_κ must fail to be “ κ^+ -saturated” (Baumgartner-Taylor-Wagon) is when κ is “**greatly Mahlo**”, which follows from weak compactness.

Table of Contents

1 Introduction

2 The Mahlo Order

3 Forcing

Stationary reflection

However, $[X_\beta] \leq [X_\alpha]$, $X_\beta \not\sim X_\alpha$ isn't "strong enough" for purposes of actually **defining** large cardinals, which is what I'm interested in here.

Definition

An $X \notin \text{NS}_\kappa$ reflects if $X \cap \alpha \notin \text{NS}_\alpha$ for some $\alpha < \kappa$. It reflects stationarily often if $\text{Tr}(X) = \{\alpha < \kappa : X \cap \alpha \notin \text{NS}_\alpha\} \notin \text{NS}_\kappa$.

Clearly, $X \subseteq \kappa^+$ cannot reflect if it consists entirely of cofinality- κ ordinals ($X \subseteq S_\kappa^{\kappa^+}$). Generally, $\text{Tr}(X)$ is a lot thinner than X .

Stationary reflection

However, $[X_\beta] \leq [X_\alpha]$, $X_\beta \not\sim X_\alpha$ isn't "strong enough" for purposes of actually **defining** large cardinals, which is what I'm interested in here.

Definition

An $X \notin \text{NS}_\kappa$ *reflects* if $X \cap \alpha \notin \text{NS}_\alpha$ for some $\alpha < \kappa$. It reflects stationarily often if $\text{Tr}(X) = \{\alpha < \kappa : X \cap \alpha \notin \text{NS}_\alpha\} \notin \text{NS}_\kappa$.

Clearly, $X \subseteq \kappa^+$ cannot reflect if it consists entirely of cofinality- κ ordinals ($X \subseteq S_\kappa^{\kappa^+}$). Generally, $\text{Tr}(X)$ is a lot thinner than X .

Theorem

(Folklore) The statement "every stationary $S \subseteq S_\omega^{\omega_2}$ reflects" is equiconsistent with a Mahlo cardinal.

Stationary reflection at limit cardinals

Another interesting result *re* large cardinals:

Theorem

(Jensen, Kunen) If $V = L$, κ is weakly compact iff every stationary subset of κ reflects. The converse can fail if $V \neq L$ (even if $V = L[A]$ for $A \subseteq \kappa$).

Stationary reflection at limit cardinals

Another interesting result *re* large cardinals:

Theorem

(Jensen, Kunen) If $V = L$, κ is weakly compact iff every stationary subset of κ reflects. The converse can fail if $V \neq L$ (even if $V = L[A]$ for $A \subseteq \kappa$).

A priori, there is no reason for κ to be more than ω -Mahlo when every stationary subset of κ reflects, where κ is 0-Mahlo (Mahlo) if the set of regular cardinals below is stationary, and κ is $\alpha + 1$ -Mahlo if the set of α -Mahlo cardinals below is stationary. Take conjunctions at limit α .

The Mahlo order

Indeed, ω -Mahloness is optimal, by forcing to “kill” $\{\alpha < \kappa : \alpha \text{ is } \omega\text{-Mahlo}\}$ while preserving “every stationary subset reflects” (this is folklore, but this is not how Kunen’s original proof went). Weakly compact cardinals are κ -Mahlo and more.

Now put $X < Y$ iff X, Y are stationary and $[Y] \leq [\text{Tr}(X)]$. Notice the order is reversed, so any club is now the least element, not the greatest.

The Mahlo order

Indeed, ω -Mahloness is optimal, by forcing to “kill” $\{\alpha < \kappa : \alpha \text{ is } \omega\text{-Mahlo}\}$ while preserving “every stationary subset reflects” (this is folklore, but this is not how Kunen’s original proof went). Weakly compact cardinals are κ -Mahlo and more.

Now put $X < Y$ iff X, Y are stationary and $[Y] \leq [\text{Tr}(X)]$. Notice the order is reversed, so any club is now the least element, not the greatest. Surprisingly:

Theorem

(Jech) $<$ is well-founded.

Example

$$\begin{aligned} S_\omega^\kappa < S_{\omega_1}^\kappa < S_{\omega_2}^\kappa < \cdots < \{\alpha < \kappa : \text{cof}(\alpha) = \alpha\} \\ < \{\alpha < \kappa : \alpha \text{ is Mahlo}\} < \cdots < \{\alpha < \kappa : \alpha \text{ is } \alpha\text{-Mahlo}\} < \cdots \end{aligned}$$

- $o(\aleph_{\alpha+1}) = \alpha + 1$.

Example

$$\begin{aligned} S_\omega^\kappa < S_{\omega_1}^\kappa < S_{\omega_2}^\kappa < \dots < \{\alpha < \kappa : \text{cof}(\alpha) = \alpha\} \\ < \{\alpha < \kappa : \alpha \text{ is Mahlo}\} < \dots < \{\alpha < \kappa : \alpha \text{ is } \alpha\text{-Mahlo}\} < \dots \end{aligned}$$

- $o(\aleph_{\alpha+1}) = \alpha + 1$.
- $o(\kappa) \geq \kappa$ iff κ is (weakly) inaccessible.
- $o(\kappa) > \kappa$ iff κ is Mahlo.

Example

$$S_\omega^\kappa < S_{\omega_1}^\kappa < S_{\omega_2}^\kappa < \cdots < \{\alpha < \kappa : \text{cof}(\alpha) = \alpha\}$$

$$< \{\alpha < \kappa : \alpha \text{ is Mahlo}\} < \cdots < \{\alpha < \kappa : \alpha \text{ is } \alpha\text{-Mahlo}\} < \cdots$$

- $o(\aleph_{\alpha+1}) = \alpha + 1$.
- $o(\kappa) \geq \kappa$ iff κ is (weakly) inaccessible.
- $o(\kappa) > \kappa$ iff κ is Mahlo.
- At $\kappa \cdot \omega$, we “catch up” with if we only allow regular reflection points, which would make S_μ^κ have rank 0 for all fixed $\mu < \kappa$.

Table of Contents

1 Introduction

2 The Mahlo Order

3 Forcing

Weakly compact cardinals

Clearly, $o(\kappa) < (2^\kappa)^+$. Recall that if κ is weakly compact then κ is κ -Mahlo, so $o(\kappa) \geq \kappa \cdot 2$. In fact, $o(\kappa) > \kappa^+$. So, if $2^\kappa = \kappa^+$, we're in the awkward position:

$$\kappa^+ < o(\kappa) < \kappa^{++}$$

Weakly compact cardinals

Clearly, $o(\kappa) < (2^\kappa)^+$. Recall that if κ is weakly compact then κ is κ -Mahlo, so $o(\kappa) \geq \kappa \cdot 2$. In fact, $o(\kappa) > \kappa^+$. So, if $2^\kappa = \kappa^+$, we're in the awkward position:

$$\kappa^+ < o(\kappa) < \kappa^{++}$$

Meanwhile, if $2^\kappa > \kappa^{++}$, can we have e.g. $o(\kappa) = \kappa^{++}$ or $o(\kappa) > \kappa^{++}$? Test question:

Question

If κ is weakly compact, must there be a forcing extension with $o(\kappa) \geq \kappa^{++}$, all cardinals preserved, and the continuum function untouched except at κ ?

The Club Domination Order

For $f, g : \kappa \rightarrow \kappa$, $f \leq^* g$ iff $\{\alpha < \kappa : f(\alpha) \leq g(\alpha)\}$ contains a club. If $\text{cof}(\kappa) > \omega$ then this is a well-founded partial order, by countable completeness of the club filter. Let $\mathbb{P}(\kappa)$ denote its height. Clearly, $\text{cof}(\mathbb{P}(\kappa)) > \kappa$ and $\mathbb{P}(\kappa) < (2^\kappa)^+$.

The Club Domination Order

For $f, g : \kappa \rightarrow \kappa$, $f \leq^* g$ iff $\{\alpha < \kappa : f(\alpha) \leq g(\alpha)\}$ contains a club. If $\text{cof}(\kappa) > \omega$ then this is a well-founded partial order, by countable completeness of the club filter. Let $\mathbb{P}(\kappa)$ denote its height. Clearly, $\text{cof}(\mathbb{P}(\kappa)) > \kappa$ and $\mathbb{P}(\kappa) < (2^\kappa)^+$.

- (Donder-Levinski) *Weak Chang's Conjecture*, aka *Club Bounding*: $\mathbb{P}(\omega_1) = \omega_2$. This is slightly below an ω_1 -Erdős – between an ineffable and a measurable – in consistency strength.
- (Donder-Koepke) For $\kappa > \omega_1$, $\mathbb{P}(\kappa) = \kappa^+$ implies 0^\dagger (zero-dagger, between a measurable and two measurables in consistency strength) exists. No upper bound is known, to my knowledge.

Better Bounds on a Weakly Compact Cardinal's Mahlo Rank

The observation of a weakly compact cardinal's Mahlo rank and these facts about \mathbb{P} leads to a natural conjecture.

Conjecture

If κ is weakly compact, then $o(\kappa) \geq \mathbb{P}(\kappa)$.

The natural way to go about this is a transfinite recursion, translating a \leq^* -increasing chain of functions into a $<$ -increasing chain of stationary sets. But I haven't gone through the details yet.

Forcing

Observe that it's quite easy to change $\mathbb{P}(\kappa)$ by forcing. Specifically, κ -Hechler forcing can be iterated with $< \kappa$ -support for γ stages to make $\mathbb{P}(\kappa)^{V[G]} \geq \mathbb{P}(\kappa)^V + \gamma$ (in fact $\mathbb{P}(\kappa)^{V[G]} \geq \mathbb{P}(\kappa)^V \cdot (1 + \gamma)$ and much more) while preserving all cardinals and cofinalities (note that the κ^+ -cc alone isn't necessarily preserved in infinite-support iterations, we need a form of centeredness).

Killing Weak Compactness

When trying to build a model with large $o(\kappa)$ or $\mathbb{P}(\kappa)$, it seems possible that κ loses its weak compactness, making it uninteresting in the extension. Some preparations exist to remedy this:

Killing Weak Compactness

When trying to build a model with large $o(\kappa)$ or $\mathbb{P}(\kappa)$, it seems possible that κ loses its weak compactness, making it uninteresting in the extension. Some preparations exist to remedy this:

- (Laver) If κ is supercompact, there is a κ -cc forcing notion preserving κ 's supercompactness so that, in the extension, any further $< \kappa$ -directed forcing preserves κ 's supercompactness. But supercompactness feels overkill.

Killing Weak Compactness

When trying to build a model with large $o(\kappa)$ or $\mathbb{P}(\kappa)$, it seems possible that κ loses its weak compactness, making it uninteresting in the extension. Some preparations exist to remedy this:

- (Laver) If κ is supercompact, there is a κ -cc forcing notion preserving κ 's supercompactness so that, in the extension, any further $< \kappa$ -directed forcing preserves κ 's supercompactness. But supercompactness feels overkill.
- (Folklore) If e.g. $V = L$, $\text{Add}(\kappa, \kappa^{++})$ kills κ 's weak compactness. You can remedy this by first forcing with the Easton iteration of $\text{Add}(\lambda, \lambda^{++})$ for all inaccessible $\lambda < \kappa$.

Killing Weak Compactness

When trying to build a model with large $o(\kappa)$ or $\mathbb{P}(\kappa)$, it seems possible that κ loses its weak compactness, making it uninteresting in the extension. Some preparations exist to remedy this:

- (Laver) If κ is supercompact, there is a κ -cc forcing notion preserving κ 's supercompactness so that, in the extension, any further $< \kappa$ -directed forcing preserves κ 's supercompactness. But supercompactness feels overkill.
- (Folklore) If e.g. $V = L$, $\text{Add}(\kappa, \kappa^{++})$ kills κ 's weak compactness. You can remedy this by first forcing with the Easton iteration of $\text{Add}(\lambda, \lambda^{++})$ for all inaccessible $\lambda < \kappa$.
- (Hamkins) In fact, it is possible to arrange for a cardinal's weak compactness to be killed by **any** $< \kappa$ -closed forcing, the antithesis to Laver's result.

An Altered Test Question

I'm not sure what preparation to use when trying to increase $o(\kappa)$, $\mathbb{P}(\kappa)$ by forcing.

The test question becomes interesting if we stipulate that you can't increase $\mathbb{P}(\kappa)$ while trying to increase $o(\kappa)$, e.g. starting with $\kappa^+ < \mathbb{P}(\kappa) \leq o(\kappa) < \kappa^{++}$ and then obtaining $\kappa^+ < \mathbb{P}(\kappa) < \kappa^{++} \leq o(\kappa)$.

An Altered Test Question

I'm not sure what preparation to use when trying to increase $o(\kappa)$, $\mathbb{P}(\kappa)$ by forcing.

The test question becomes interesting if we stipulate that you can't increase $\mathbb{P}(\kappa)$ while trying to increase $o(\kappa)$, e.g. starting with $\kappa^+ < \mathbb{P}(\kappa) \leq o(\kappa) < \kappa^{++}$ and then obtaining

$\kappa^+ < \mathbb{P}(\kappa) < \kappa^{++} \leq o(\kappa)$. A natural way of adding thin – thus high Mahlo rank – stationary sets in such an iteration would be considering the filter \mathcal{F} generated by the stationary sets in the ascending chain we've built so far, and Laver or Mathias forcing relative to \mathcal{F} .

Thank you!

However, these increase $\mathbb{P}(\kappa)$ and may not be sufficiently iterable with $< \kappa$ support. Possibly one could generalize some other poset for adding a new real – such as Miller forcing – or come up with an entirely new idea. Maybe I'm missing something obvious.

Thanks for listening.